Skip to article frontmatterSkip to article content
Site not loading correctly?

This may be due to an incorrect BASE_URL configuration. See the MyST Documentation for reference.

Foundational Theorems

Forward and Backward Error

The Contraction Mapping Principle

Proof 1

Existence and convergence: The sequence {xn}\{x_n\} is Cauchy. For m>nm > n:

d(xn,xm)k=nm1d(xk,xk+1)k=nm1qkd(x0,x1)qn1qd(x0,x1)d(x_n, x_m) \leq \sum_{k=n}^{m-1} d(x_k, x_{k+1}) \leq \sum_{k=n}^{m-1} q^k d(x_0, x_1) \leq \frac{q^n}{1-q} d(x_0, x_1)

Since q<1q < 1, this tends to 0 as nn \to \infty. By completeness, x=limnxnx^* = \lim_{n \to \infty} x_n exists.

Taking limits in xn+1=T(xn)x_{n+1} = T(x_n) and using continuity of TT (contractions are Lipschitz, hence continuous):

x=limnxn+1=limnT(xn)=T(limnxn)=T(x)x^* = \lim_{n \to \infty} x_{n+1} = \lim_{n \to \infty} T(x_n) = T\left(\lim_{n \to \infty} x_n\right) = T(x^*)

Uniqueness: If T(x)=xT(x^*) = x^* and T(y)=yT(y^*) = y^*, then

d(x,y)=d(T(x),T(y))qd(x,y)d(x^*, y^*) = d(T(x^*), T(y^*)) \leq q \cdot d(x^*, y^*)

Since q<1q < 1, this forces d(x,y)=0d(x^*, y^*) = 0, so x=yx^* = y^*.

Convergence rate: d(xn,x)=d(T(xn1),T(x))qd(xn1,x)qnd(x0,x)d(x_n, x^*) = d(T(x_{n-1}), T(x^*)) \leq q \cdot d(x_{n-1}, x^*) \leq q^n d(x_0, x^*).

A posteriori bound: Let mm \to \infty in the Cauchy estimate with nn replaced by n1n-1.

The Neumann Series

Proof 2

Convergence: Since akak\|a^k\| \leq \|a\|^k (submultiplicativity of the norm in a Banach algebra) and a<1\|a\| < 1, the series k=0ak\sum_{k=0}^\infty a^k converges absolutely, hence converges in the complete space A\mathcal{A}.

Verification: The partial sums Sn=k=0nakS_n = \sum_{k=0}^n a^k satisfy

(1a)Sn=Sn(1a)=1an+1(1 - a) S_n = S_n (1 - a) = 1 - a^{n+1}

As nn \to \infty, an+1an+10\|a^{n+1}\| \leq \|a\|^{n+1} \to 0, so (1a)k=0ak=1(1 - a) \sum_{k=0}^\infty a^k = 1.

Spectral radius version: Gelfand’s formula gives ρ(A)=limkAk1/k\rho(A) = \lim_{k \to \infty} \|A^k\|^{1/k}. If ρ(A)<1\rho(A) < 1, then for any rr with ρ(A)<r<1\rho(A) < r < 1, we have AkCrk\|A^k\| \leq C r^k for large kk, ensuring convergence.

Proof 3

Write A+ΔA=A(I+A1ΔA)A + \Delta A = A(I + A^{-1}\Delta A). Since A1ΔAA1ΔA<1\|A^{-1}\Delta A\| \leq \|A^{-1}\| \|\Delta A\| < 1, the Neumann series gives

(A+ΔA)1=(I+A1ΔA)1A1=k=0(A1ΔA)kA1(A + \Delta A)^{-1} = (I + A^{-1}\Delta A)^{-1} A^{-1} = \sum_{k=0}^\infty (-A^{-1}\Delta A)^k A^{-1}

The bound follows from estimating (I+A1ΔA)1I\|(I + A^{-1}\Delta A)^{-1} - I\|.