Skip to article frontmatterSkip to article content
Site not loading correctly?

This may be due to an incorrect BASE_URL configuration. See the MyST Documentation for reference.

Inner Product Spaces

The concept of “angle” and “orthogonality” generalizes beyond Rn\mathbb{R}^n through the abstraction of an inner product.

Every inner product induces a norm: x=x,x\|x\| = \sqrt{\langle x, x \rangle}.

Example 1 (Inner Products)
SpaceInner ProductInduced Norm
Rn\mathbb{R}^nx,y=xTy=ixiyi\langle x, y \rangle = x^T y = \sum_i x_i y_iEuclidean norm x2|x|_2
L2[a,b]L^2[a,b]f,g=abf(x)g(x)dx\langle f, g \rangle = \int_a^b f(x)g(x)\,dxL2L^2 norm f2|f|_2
2\ell^2 (sequences)x,y=i=1xiyi\langle x, y \rangle = \sum_{i=1}^\infty x_i y_i2\ell^2 norm

The same theorems we prove for Rn\mathbb{R}^n—Pythagorean theorem, best approximation, Gram-Schmidt—work in any inner product space. When the space is complete (Cauchy sequences converge), it’s called a Hilbert space.

Examples of Hilbert spaces:

  • Rn\mathbb{R}^n with the dot product

  • L2[a,b]L^2[a,b] — the natural setting for Fourier series

  • Sobolev spaces HkH^k — the natural setting for PDEs

The finite-dimensional theory you learn here is the template for infinite-dimensional analysis.

Orthogonality

In Rn\mathbb{R}^n: x,y=x2y2cos(θ)\langle x, y \rangle = \|x\|_2 \|y\|_2 \cos(\theta), so orthogonal means θ=±π/2\theta = \pm \pi/2at right angles.

The Pythagorean Theorem (Generalized)

Proof 1

Using only the algebraic properties of the inner product:

vw2=vw,vw=v,vv,ww,v+w,w=v2+w2(since v,w=0)\begin{align} \|v - w\|^2 &= \langle v-w, v-w \rangle \\ &= \langle v, v \rangle - \langle v, w \rangle - \langle w, v \rangle + \langle w, w \rangle \\ &= \|v\|^2 + \|w\|^2 \quad \text{(since } \langle v, w \rangle = 0\text{)} \end{align}

This 2D picture captures the high-dimensional truth:

        v
        |
        |
        +------w

Subspaces

Examples in Rn\mathbb{R}^n:

Examples in L2[a,b]L^2[a,b]:

Orthogonal Complements

This is the set of all vectors orthogonal to everything in UU.

Example in R3\mathbb{R}^3: If U={(x,y,0)}U = \{(x, y, 0)\} (the xyxy-plane), then U={(0,0,z)}U^\perp = \{(0, 0, z)\} (the zz-axis).

Orthogonal Projection

The orthogonal projection of vv onto a unit vector uu is:

projuv=v,uu\text{proj}_u v = \langle v, u \rangle \, u

This gives the component of vv in the direction of uu.

For projection onto a subspace UU with orthonormal basis {u1,,um}\{u_1, \ldots, u_m\}:

projUv=i=1mv,uiui\text{proj}_U v = \sum_{i=1}^m \langle v, u_i \rangle \, u_i

The Best Approximation Theorem

Proof 2

Suppose zUz \in U and xzUx - z \in U^\perp. For any uUu \in U:

Since zuUz - u \in U (subspaces are closed under subtraction) and xzUx - z \perp U:

xz,zu=0\langle x - z, z - u \rangle = 0

By Pythagoras:

xz2+zu2=xu2\|x - z\|^2 + \|z - u\|^2 = \|x - u\|^2

Since zu20\|z - u\|^2 \geq 0, we have xzxu\|x - z\| \leq \|x - u\| for all uUu \in U. ∎

Geometric Picture:

        x
       /|
      / |  (x - z) ⟂ U
     /  |
    z---+---- U (subspace)

Orthonormal Bases

Why orthonormal bases are useful:

  1. Coefficients are easy: v=iciuiv = \sum_i c_i u_i implies ci=v,uic_i = \langle v, u_i \rangle

  2. Projections are simple: projUv=iv,uiui\text{proj}_U v = \sum_i \langle v, u_i \rangle \, u_i

  3. Condition number is 1: No amplification of errors

Orthogonal Matrices

Key properties of orthogonal matrices:

PropertyMeaning
QTQ=IQ^T Q = IColumns are orthonormal
QQT=IQ Q^T = IRows are orthonormal
Q1=QTQ^{-1} = Q^TInverse is just transpose
Qx2=x2|Qx|_2 = |x|_2Preserves lengths (isometry)
κ2(Q)=1\kappa_2(Q) = 1Perfect conditioning