Linear Algebra Fundamentals University of Massachusetts Amherst
Vectors are the objects we compute with; matrices are linear functions that act on vectors. To analyze algorithms, we need to measure size: norms for vectors, induced norms for matrices. The condition number κ ( A ) = ∥ A ∥ ∥ A − 1 ∥ \kappa(A) = \|A\|\|A^{-1}\| κ ( A ) = ∥ A ∥∥ A − 1 ∥ tells us how sensitive a linear system is to perturbations.
Vectors and Vector Spaces ¶ The fundamental objects in numerical linear algebra are vectors —elements of a vector space.
A vector space V V V over R \mathbb{R} R is a set with two operations:
Addition: x + y ∈ V \mathbf{x} + \mathbf{y} \in V x + y ∈ V for x , y ∈ V \mathbf{x}, \mathbf{y} \in V x , y ∈ V
Scalar multiplication: α x ∈ V \alpha\mathbf{x} \in V α x ∈ V for α ∈ R \alpha \in \mathbb{R} α ∈ R , x ∈ V \mathbf{x} \in V x ∈ V
satisfying the usual axioms (associativity, commutativity, distributivity, zero element, inverses).
The canonical example is R n \mathbb{R}^n R n —column vectors with n n n real components. But vector spaces are far more general:
Space Elements Dimension R n \mathbb{R}^n R n Column vectors n n n C n \mathbb{C}^n C n Complex vectors n n n (over C \mathbb{C} C )P n \mathcal{P}_n P n Polynomials of degree ≤ n \leq n ≤ n n + 1 n+1 n + 1 C [ a , b ] C[a,b] C [ a , b ] Continuous functions on [ a , b ] [a,b] [ a , b ] ∞ \infty ∞ L 2 [ a , b ] L^2[a,b] L 2 [ a , b ] Square-integrable functions ∞ \infty ∞
The same linear algebra concepts—basis, dimension, linear maps, norms—apply to all these spaces. When you solve a PDE numerically, you’re doing linear algebra in a function space. The finite-dimensional theory (R n \mathbb{R}^n R n ) is the template for the infinite-dimensional theory (functional analysis).
This is why we emphasize the abstract structure: vectors are elements of a vector space, matrices are linear maps. The specifics of R n \mathbb{R}^n R n are just one instance.
Vector Norms ¶ To analyze errors and convergence, we need to measure the “size” of vectors.
A vector space equipped with a norm is called a normed vector space . If it’s also complete (Cauchy sequences converge), it’s a Banach space —the natural setting for analysis.
The p p p -Norms on R n \mathbb{R}^n R n ¶ ∥ x ∥ p = ( ∑ i = 1 n ∣ x i ∣ p ) 1 / p \|\mathbf{x}\|_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p} ∥ x ∥ p = ( i = 1 ∑ n ∣ x i ∣ p ) 1/ p Name Formula Interpretation 1-norm ∣ x ∣ 1 = ∑ i ∣ x i ∣ |\mathbf{x}|_1 = \sum_i \lvert x_i \rvert ∣ x ∣ 1 = ∑ i ∣ x i ∣ Manhattan distance 2-norm ∣ x ∣ 2 = ∑ i x i 2 |\mathbf{x}|_2 = \sqrt{\sum_i x_i^2} ∣ x ∣ 2 = ∑ i x i 2 Euclidean length ∞ \infty ∞ -norm∣ x ∣ ∞ = max i ∣ x i ∣ |\mathbf{x}|_\infty = \max_i \lvert x_i \rvert ∣ x ∣ ∞ = max i ∣ x i ∣ Maximum component
Norm Equivalence ¶ All norms on R n \mathbb{R}^n R n are equivalent : for any two norms ∥ ⋅ ∥ a \|\cdot\|_a ∥ ⋅ ∥ a and ∥ ⋅ ∥ b \|\cdot\|_b ∥ ⋅ ∥ b , there exist constants c , C > 0 c, C > 0 c , C > 0 such that:
c ∥ x ∥ a ≤ ∥ x ∥ b ≤ C ∥ x ∥ a for all x c\|\mathbf{x}\|_a \leq \|\mathbf{x}\|_b \leq C\|\mathbf{x}\|_a \quad \text{for all } \mathbf{x} c ∥ x ∥ a ≤ ∥ x ∥ b ≤ C ∥ x ∥ a for all x This is a finite-dimensional phenomenon . In infinite dimensions (function spaces), different norms can give genuinely different notions of convergence—a key subtlety in PDE theory.
Function Space Norms ¶ The same idea extends to functions:
Space Norm Formula C [ a , b ] C[a,b] C [ a , b ] Supremum norm ∣ f ∣ ∞ = max x ∈ [ a , b ] ∣ f ( x ) ∣ |f|_\infty = \max_{x \in [a,b]} \lvert f(x) \rvert ∣ f ∣ ∞ = max x ∈ [ a , b ] ∣ f ( x )∣ L 2 [ a , b ] L^2[a,b] L 2 [ a , b ] L 2 L^2 L 2 norm∣ f ∣ 2 = ∫ a b ∣ f ( x ) ∣ 2 d x |f|_2 = \sqrt{\int_a^b \lvert f(x) \rvert^2 dx} ∣ f ∣ 2 = ∫ a b ∣ f ( x ) ∣ 2 d x L p [ a , b ] L^p[a,b] L p [ a , b ] L p L^p L p norm∣ f ∣ p = ( ∫ a b ∣ f ( x ) ∣ p d x ) 1 / p |f|_p = \left(\int_a^b \lvert f(x) \rvert^p dx\right)^{1/p} ∣ f ∣ p = ( ∫ a b ∣ f ( x ) ∣ p d x ) 1/ p
These are the continuous analogs of the discrete p p p -norms—sums become integrals.
Matrices as Linear Maps ¶ Matrices are linear functions between vector spaces. A matrix A ∈ R m × n A \in \mathbb{R}^{m \times n} A ∈ R m × n defines:
T A : R n → R m , T A ( x ) = A x T_A: \mathbb{R}^n \to \mathbb{R}^m, \qquad T_A(\mathbf{x}) = A\mathbf{x} T A : R n → R m , T A ( x ) = A x Linearity means:
Every linear map R n → R m \mathbb{R}^n \to \mathbb{R}^m R n → R m corresponds to a unique m × n m \times n m × n matrix, and vice versa.
In infinite dimensions, linear maps between function spaces are called operators . Differential operators (d / d x d/dx d / d x ), integral operators (∫ K ( x , y ) f ( y ) d y \int K(x,y) f(y) dy ∫ K ( x , y ) f ( y ) d y ), and solution operators for PDE s are all linear maps—the infinite-dimensional analogs of matrices.
The Matrix-Vector Product ¶ Given A ∈ R m × n A \in \mathbb{R}^{m \times n} A ∈ R m × n and x ∈ R n \mathbf{x} \in \mathbb{R}^n x ∈ R n :
( A x ) i = ∑ j = 1 n a i j x j , i = 1 , … , m (A\mathbf{x})_i = \sum_{j=1}^{n} a_{ij} x_j, \quad i = 1, \ldots, m ( A x ) i = j = 1 ∑ n a ij x j , i = 1 , … , m Cost: 2 m n 2mn 2 mn floating-point operations.
Two views:
Row View Column View Each ( A x ) i (A\mathbf{x})_i ( A x ) i is a dot product: a i T ⋅ x \mathbf{a}_i^T \cdot \mathbf{x} a i T ⋅ x A x A\mathbf{x} A x is a linear combination: ∑ j x j a ( j ) \sum_j x_j \mathbf{a}^{(j)} ∑ j x j a ( j )
The column view reveals that A x A\mathbf{x} A x lives in the column space (range) of A A A .
Geometric Interpretation ¶ Matrix Type Geometric Effect Diagonal Scaling along coordinate axes Orthogonal (Q T Q = I Q^TQ = I Q T Q = I ) Rotation and/or reflection Symmetric Scaling along eigenvector directions
Matrix Norms ¶ Since matrices are linear maps, we measure their size by how much they “stretch” vectors.
This definition works for any linear map between normed spaces—it’s how we measure operators in functional analysis too.
Name Formula Computation 1-norm ∣ A ∣ 1 = max j ∑ i ∣ a i j ∣ |A|_1 = \max_j \sum_i \lvert a_{ij} \rvert ∣ A ∣ 1 = max j ∑ i ∣ a ij ∣ Maximum column sum ∞ \infty ∞ -norm∣ A ∣ ∞ = max i ∑ j ∣ a i j ∣ |A|_\infty = \max_i \sum_j \lvert a_{ij} \rvert ∣ A ∣ ∞ = max i ∑ j ∣ a ij ∣ Maximum row sum 2-norm ∣ A ∣ 2 = σ max ( A ) |A|_2 = \sigma_{\max}(A) ∣ A ∣ 2 = σ m a x ( A ) Largest singular value
Key properties: