Vector and Matrix Norms

Contents

Vector and Matrix Norms#

Norms provide different ways of describing the magnitude of a vector or matrix. The length of a vector \(\| \boldsymbol{x} \|_2 = \sqrt{x_1^2 + \cdots + x_n^2}\) is called the 2-norm but there are infinitely many other norms like the 1-norm and \(\infty\)-norm. The norm \(\| A \|\) of a matrix \(A\) quantifies how much \(A\) stretches vectors.

A norm on the vector space \(\mathbb{R}^n\) is a function \(\| \cdot \|\) such that:

  1. \(\| \boldsymbol{x} \| \geq 0\) for all \(\boldsymbol{x} \in \mathbb{R}^n\)

  2. \(\| \boldsymbol{x} \| = 0\) if and only if \(\boldsymbol{x} = \boldsymbol{0}\)

  3. \(\| c \boldsymbol{x} \| = |c| \| \boldsymbol{x} \|\) for any \(c \in \mathbb{R}\) and \(\boldsymbol{x} \in \mathbb{R}^n\)

  4. \(\| \boldsymbol{x} + \boldsymbol{y} \| \leq \| \boldsymbol{x} \| + \| \boldsymbol{y} \|\) for all \(\boldsymbol{x} , \boldsymbol{y} \in \mathbb{R}^n\)

Condition 4 is called the triangle inequality. See Wikipedia:Norm.

Let \(\boldsymbol{x} \in \mathbb{R}^n\).

  1. The 2-norm (also called the \(\ell_2\)-norm) is given by the familiar formula

    \[ \| \boldsymbol{x} \|_2 = \sqrt{ | x_1|^2 + \cdots + | x_n |^2 } = \sqrt{ \sum_{k=1}^n | x_k |^2 } \]
  2. More generally, the \(p\)-norm (also called the \(\ell_p\)-norm) is given by

    \[ \| \boldsymbol{x} \|_p = \left( \sum_{k=1}^n | x_k |^p \right)^{1/p} \]

    For example, a commonly used norm is the 1-norm

    \[ \| \boldsymbol{x} \|_1 = | x_1| + \cdots + | x_n | = \sum_{k=1}^n | x_k | \]
  3. The \(\infty\)-norm (also called the \(\ell_\infty\)-norm) is given by

    \[ \| \boldsymbol{x} \|_{\infty} = \max_k | x_k | \]

The Frobenius norm of a matrix \(A\) (also called the Hilbert-Schmidt norm) is given by

\[ \|A\|_{\rm FR} = \sqrt{ \sum_{i=1}^m \sum_{j=1}^n |a_{i,j}|^2 } \]

Let \(D\) be a diagonal matrix and let \(\boldsymbol{d}\) be the vector of diagonal entries of \(D\):

\[\begin{split} D = \begin{bmatrix} d_1 & & & \\ & d_2 & & \\ & & \ddots & \\ & & & d_n \end{bmatrix} \hspace{10mm} \boldsymbol{d} = \begin{bmatrix} d_1 \\ d_2 \\ \vdots \\ d_n \end{bmatrix} \end{split}\]

Then \(\|D\|_{\rm FR} = \| \boldsymbol{d} \|_2\).

Choose a vector norm \(\| \cdot \|\). The matrix norm (with respect to the vector norm \(\| \cdot \|\)) is

\[ \| A \| = \max_{\boldsymbol{x} \not= \boldsymbol{0} } \frac{\| A \boldsymbol{x} \|}{ \| \boldsymbol{x} \|} \]

Note that \(\| A \boldsymbol{x} \| / \| \boldsymbol{x} \|= \| A ( \boldsymbol{x} / \| \boldsymbol{x} \| ) \|\) therefore

\[ \| A \| = \max_{ \| \boldsymbol{x} \| = 1 } \| A \boldsymbol{x} \| \]

In other words, the matrix norm is the maximum stretch of a unit vector by the linear transformation \(A\). The matrix norm is also called the operator norm.

We almost always use the 2-norm when defining the matrix norm. Therefore

\[ \| A \| = \| A \|_2 = \max_{\boldsymbol{x} \not= \boldsymbol{0} } \frac{\| A \boldsymbol{x} \|_2}{ \| \boldsymbol{x} \|_2} \]

is the matrix norm with respect to the 2-norm unless a different vector norm is explicitly stated.

Let \(D\) be a diagonal matrix and let \(\boldsymbol{d}\) be the vector of diagonal entries of \(D\):

\[\begin{split} D = \begin{bmatrix} d_1 & & & \\ & d_2 & & \\ & & \ddots & \\ & & & d_n \end{bmatrix} \hspace{10mm} \boldsymbol{d} = \begin{bmatrix} d_1 \\ d_2 \\ \vdots \\ d_n \end{bmatrix} \end{split}\]

Then \(\|D\|_2 = \| \boldsymbol{d} \|_{\infty}\).

A matrix norm satisfies the properties:

  1. \(\| A \| > 0\) for all \(A \not= 0\)

  2. \(\| A \| = 0\) if and only \(A = 0\)

  3. \(\| c A \| = |c| \| A \|\) for any \(c \in \mathbb{R}\)

  4. \(\| A + B \| \leq \| A \| + \| B \|\)

  5. \(\| A B \| \leq \| A \| \| B \|\)

  6. \(\| A \boldsymbol{x} \| \leq \| A \| \| \boldsymbol{x} \|\) for any \(\boldsymbol{x} \in \mathbb{R}^n\)

Exercises#

  1. Prove that the \(\infty\)-norm satisfies the required properties of a norm.

  2. Sketch the “unit ball” in \(\mathbb{R}^2\) for each norm:

    \[\begin{split} \begin{align*} B_1 &= \{ \mathbf{x} \in \mathbb{R}^2 : \| \boldsymbol{x} \|_1 = 1 \} \\ B_2 &= \{ \mathbf{x} \in \mathbb{R}^2 : \| \boldsymbol{x} \|_2 = 1 \} \\ B_{\infty} &= \{ \mathbf{x} \in \mathbb{R}^2 : \| \boldsymbol{x} \|_{\infty} = 1 \} \end{align*} \end{split}\]
  3. Which set of inequalities is always true? Explain.

    \[ \| \boldsymbol{x} \|_1 \leq \| \boldsymbol{x} \|_2 \leq \| \boldsymbol{x} \|_{\infty} \hspace{5mm} \text{or} \hspace{5mm} \| \boldsymbol{x} \|_1 \geq \| \boldsymbol{x} \|_2 \geq \| \boldsymbol{x} \|_{\infty} \]
  4. Determine whether the statement is True or False.

    • If \(\boldsymbol{x} \in \mathbb{R}^n\) such that \(\| \boldsymbol{x} \|_1 = \| \boldsymbol{x} \|_{\infty} = \lambda\) then \(\| \boldsymbol{x} \|_p = \lambda\) for any \(p > 1\).

    • Define \(\| \boldsymbol{x} \|_0 = \sum_{k=1}^n x_k^2\) for any \(\boldsymbol{x} = \begin{bmatrix} x_1 & \cdots & x_n \end{bmatrix}^T \in \mathbb{R}^n\). Then \(\| \boldsymbol{x} \|_{0}\) is a norm.

    • Define \(\| \boldsymbol{x} \|_{\min} = \min_k | x_k |\) for any \(\boldsymbol{x} = \begin{bmatrix} x_1 & \cdots & x_n \end{bmatrix}^T \in \mathbb{R}^n\). Then \(\| \boldsymbol{x} \|_{\min}\) is a norm.

  5. Suppose \(\boldsymbol{x} = \begin{bmatrix} 1 & 2 & 2 & c & 1 & 1 \end{bmatrix}^T \in \mathbb{R}^6\) such that \(\| \boldsymbol{x} \|_{3} = 3\). Find all possible values \(c\).

  6. Suppose \(\boldsymbol{x} = \begin{bmatrix} 1 & 3 & 2 & 2 & c & 2 & 1 & 2 \end{bmatrix}^T \in \mathbb{R}^8\) such that \(\| \boldsymbol{x} \|_{3} = 5\). Find all possible values \(c\).

  7. Suppose \(\boldsymbol{x} = \begin{bmatrix} 1 & 0 & 2 & c & -1 \end{bmatrix}^T \in \mathbb{R}^5\) such that \(\| \boldsymbol{x} \|_1 = 5\). Find all possible values \(c\).

  8. Suppose \(\boldsymbol{x} = \begin{bmatrix} 1 & 0 & 2 & c & -1 \end{bmatrix}^T \in \mathbb{R}^5\) such that \(\| \boldsymbol{x} \|_{\infty} = 5\). Find all possible values \(c\).

  9. Suppose \(A\) is a 2 by 2 matrix such that the image of the unit square under the linear transformation \(A\) is:

    /img/img02.png

    Determine \(\mathrm{cond}_{\infty}(A)\) (the condition number with respect to the \(\infty\)-norm).

  10. Suppose \(A\) is a 2 by 2 matrix such that the image of the unit “diamond” under the linear transformation \(A\) is:

    /img/img03.png

    Determine \(\mathrm{cond}_1(A)\) (the condition number with respect to the 1-norm).