QR by Reflectors

Contents

QR by Reflectors#

An elementary reflector (or Householder transformation) is matrix of the form

\[ H = I - \frac{2}{\| \boldsymbol{u} \|^2} \boldsymbol{u} \boldsymbol{u}^T \]

for some nonzero vector \(\boldsymbol{u} \in \mathbb{R}^n\). Note that a reflector is an orthogonal matrix since \(H^T = H\) and \(H^2 = I\). Note also that if \(P\) is the orthogonal projection onto \(\boldsymbol{u}\) then \(H = I - 2P\) and \(H\) is the reflection through the hyperplane orthogonal to \(\boldsymbol{u}\).

Let \(\{ \boldsymbol{e}_1, \dots, \boldsymbol{e}_n \}\) be the standard orthonormal basis of \(\mathbb{R}^n\)

\[\begin{split} \boldsymbol{e}_1 = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} \hspace{5mm} \boldsymbol{e}_2 = \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix} \hspace{5mm} \cdots \hspace{5mm} \boldsymbol{e}_n = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix} \end{split}\]

Let \(\boldsymbol{a} \in \mathbb{R}^n\) and \(\alpha = -\mathrm{sign}(a_1) \| \boldsymbol{a} \|\). Let \(\boldsymbol{u} = \boldsymbol{a} - \alpha \boldsymbol{e}_1\), let \(P\) be the orthogonal projector onto \(\boldsymbol{u}\) and let \(H = I - 2P\) be the corresponding elementary reflector. Then

\[\begin{split} H \boldsymbol{a} = \alpha \boldsymbol{e}_1 = \begin{bmatrix} \alpha \\ 0 \\ \vdots \\ 0 \end{bmatrix} \end{split}\]

More generally, let \(\boldsymbol{a} \in \mathbb{R}^n\) and partition the vector

\[\begin{split} \boldsymbol{a} = \begin{bmatrix} \boldsymbol{a}_1 \\ \boldsymbol{a}_2 \end{bmatrix} \ \ \text{where} \ \ \boldsymbol{a}_1 = \begin{bmatrix} a_1 \\ \vdots \\ a_{k-1} \end{bmatrix} \in \mathbb{R}^{k-1} \ \ \text{and} \ \ \boldsymbol{a}_2 = \begin{bmatrix} a_k \\ \vdots \\ a_n \end{bmatrix} \in \mathbb{R}^{n-k+1} \end{split}\]

Let \(\alpha = -\mathrm{sign}(a_k) \| \boldsymbol{a}_2 \|\) and let

\[\begin{split} \boldsymbol{u} = \begin{bmatrix} \boldsymbol{0} \\ \boldsymbol{a}_2 \end{bmatrix} - \alpha \boldsymbol{e}_k = \begin{bmatrix} 0 \\ \vdots \\ 0 \\ a_k - \alpha \\ a_{k+1} \\ \vdots \\ a_n \end{bmatrix} \end{split}\]

and let \(H\) be the corresponding elementary reflector. Then

\[\begin{split} H \boldsymbol{a} = \begin{bmatrix} a_1 \\ \vdots \\ a_{k-1} \\ \alpha \\ 0 \\ \vdots \\ 0 \end{bmatrix} \end{split}\]

Let \(A\) be an \(n \times m\) matrix with \(n > m\). There exists a sequence of elementary reflectors \(H_1,\dots,H_m\) such that \(H_m\cdots H_1A = R\) is upper triangular and therefore

\[ A = QR \]

where \(Q = H_1 \cdots H_m\).


Proof. For each column, construct an elementary reflector to annihilate the entries below the diagonal. For example, if \(A\) has 3 columns and 4 rows then

\[\begin{split} A = \begin{bmatrix} * & * & * \\ * & * & * \\ * & * & * \\ * & * & * \end{bmatrix} \ \ H_1A = \begin{bmatrix} * & * & * \\ 0 & * & * \\ 0 & * & * \\ 0 & * & * \end{bmatrix} \ \ H_2H_1A = \begin{bmatrix} * & * & * \\ 0 & * & * \\ 0 & 0 & * \\ 0 & 0 & * \end{bmatrix} \ \ H_3H_2H_1A = \begin{bmatrix} * & * & * \\ 0 & * & * \\ 0 & 0 & * \\ 0 & 0 & 0 \end{bmatrix} \end{split}\]

Since each \(H\) is an elementary reflector, we have \(A=H_1^{-1}H_2^{-1}H_3^{-1}R=H_1H_2H_3R\).

Find the QR decomposition of \(A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}\) by elementary reflectors.

Construct the vector

\[\begin{split} \boldsymbol{u}_1 = \boldsymbol{a}_1 - \alpha \boldsymbol{e}_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} + \sqrt{2} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 + \sqrt{2} \\ 0 \\ 1 \end{bmatrix} \\ \end{split}\]

Compute the norm squared

\[ \| \boldsymbol{u}_1 \|^2 = (1 + \sqrt{2})^2 + 1 = 4 + 2\sqrt{2} \]

and construct the elementary reflector

\[\begin{split} \begin{align*} H_1 &= I - \frac{2}{\| \boldsymbol{u}_1 \|^2} \boldsymbol{u}_1 \boldsymbol{u}_1^T = I - \frac{2}{4 + 2\sqrt{2}} \begin{bmatrix} 1 + \sqrt{2} \\ 0 \\ 1 \end{bmatrix} \begin{bmatrix} 1 + \sqrt{2} & 0 & 1 \end{bmatrix} \\ &= I - \frac{1}{2 + \sqrt{2}} \begin{bmatrix} 3 + 2\sqrt{2} & 0 & 1 + \sqrt{2} \\ 0 & 0 & 0 \\ 1 + \sqrt{2} & 0 & 1 \end{bmatrix} = \frac{1}{2 + \sqrt{2}} \begin{bmatrix} - 1 - \sqrt{2} & 0 & - 1 - \sqrt{2} \\ 0 & 2 + \sqrt{2} & 0 \\ - 1 - \sqrt{2} & 0 & 1 + \sqrt{2} \end{bmatrix} \\ &= \frac{1}{\sqrt{2}} \left[ \begin{array}{rrr} - 1 & 0 & - 1 \\ 0 & \sqrt{2} & 0 \\ - 1 & 0 & 1 \end{array} \right] \end{align*} \end{split}\]

Compute

\[\begin{split} H_1A = \frac{1}{\sqrt{2}} \left[ \begin{array}{rrr} - 1 & 0 & - 1 \\ 0 & \sqrt{2} & 0 \\ - 1 & 0 & 1 \end{array} \right] \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix} \\ = \frac{1}{\sqrt{2}} \left[ \begin{array}{rrr} - 2 & -2 & - 1 \\ 0 & \sqrt{2} & \sqrt{2} \\ 0 & 0 & -1 \end{array} \right] \end{split}\]

Since the result is already upper triangular we have \(A = QR\) where

\[\begin{split} Q = \frac{1}{\sqrt{2}} \left[ \begin{array}{rrr} - 1 & 0 & - 1 \\ 0 & \sqrt{2} & 0 \\ - 1 & 0 & 1 \end{array} \right] \hspace{10mm} R = \frac{1}{\sqrt{2}} \left[ \begin{array}{rrr} - 2 & -2 & - 1 \\ 0 & \sqrt{2} & \sqrt{2} \\ 0 & 0 & -1 \end{array} \right] \end{split}\]

Exercises#

Exercise 2. Find the elementary reflector \(H\) corresponding to the vector

\[\begin{split} \boldsymbol{u} = \begin{bmatrix} 2 \\ 1 \\ 0 \\ 1 \end{bmatrix} \end{split}\]

Exercise 3. Find an elementary reflector \(H\) such that

\[\begin{split} HA = \displaystyle \begin{bmatrix} * & * & * \\ 0 & * & * \\ 0 & * & * \\ 0 & * & * \end{bmatrix} \end{split}\]

where

\[\begin{split} A = \begin{bmatrix} 1 & 2 & 1 \\ 1 & 0 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 0 \end{bmatrix} \end{split}\]