The nullspace and range

The nullspace and range#

The Rank-Nullity Theorem describes the dimensions of the nullspace and range of a matrix.

The Nullspace#

The nullspace of a \(m \times n\) matrix \(A\) is

\[ N(A) = \{ \boldsymbol{x} \in \mathbb{R}^n : A\boldsymbol{x} = \boldsymbol{0} \} \]

Let \(A\) be a \(m \times n\) matrix. The nullspace \(N(A)\) is a subspace of \(\mathbb{R}^n\).

Let \(A\) be a \(m \times n\) matrix and let \(A = LU\) be the LU decomposition (if it exists). Then \(N(A) = N(U)\).

The Range#

The range of a \(m \times n\) matrix \(A\) is:

\[ R(A) = \{ A \boldsymbol{x} : \boldsymbol{x} \in \mathbb{R}^n \} \]

The range of \(A\) is also called image or column space of \(A\).

Matrix multiplication can be written as

\[\begin{split} A \boldsymbol{x} = \begin{bmatrix} & & \\ \boldsymbol{a}_1 & \cdots & \boldsymbol{a}_n \\ & & \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = x_1 \boldsymbol{a}_1 + \cdots + x_n \boldsymbol{a}_n \end{split}\]

Therefore the range of \(A\) is the equal to the span of the columns

\[ R(A) = \mathrm{span} \{ \boldsymbol{a}_1 , \dots, \boldsymbol{a}_n \} \]

and that’s why \(R(A)\) is sometimes called the column space.

Let \(A\) be a \(m \times n\) matrix. The range \(R(A)\) is a subspace of \(\mathbb{R}^m\).

Let \(A\) be an \(m \times n\) matrix. Then

\[ \dim (R(A)) = \mathrm{rank}(A) \]

Proof. The rank of \(A\) is the number of nonzero rows in the row echelon form of \(A\). The dimension of \(R(A)\) is the number of linearly independent columns in \(A\) which is also equal to the number of nonzero rows in \(A\).

Let \(A = PLUQ\) be the LU decomposition of \(A\) computed with row-swaps (\(P\)) and column-swaps (\(Q\)) and let \(r = \mathrm{rank}(A)\). Then

\[ R(A) = \mathrm{span} \{ \boldsymbol{\ell}_1 , \dots , \boldsymbol{\ell}_r \} \]

where \(\boldsymbol{\ell}_1 , \dots , \boldsymbol{\ell}_r\) are the first \(r\) columns of \(L\). In particular, \(\boldsymbol{\ell}_1 , \dots , \boldsymbol{\ell}_r\) is a basis of \(R(A)\).


Proof. If \(\mathrm{rank}(A) = r\) then only the first \(r\) entries of the vector \(U \boldsymbol{x}\) are nonzero

\[\begin{split} U \boldsymbol{x} = \begin{bmatrix} * & * & \cdots & * \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & * & * \\ 0 & \cdots & 0 & 0 \end{bmatrix} \boldsymbol{x} = \begin{bmatrix} * \\ \vdots \\ * \\ 0 \end{bmatrix} \end{split}\]

Note, that this particular form of the matrix \(U\) is only guaranteed when you do full pivoting i.e. both row and column swaps. Therefore

\[\begin{split} LU \boldsymbol{x} = \begin{bmatrix} & & \\ \boldsymbol{\ell}_1 & \cdots & \boldsymbol{\ell}_n \\ & & \end{bmatrix} \begin{bmatrix} * \\ \vdots \\ * \\ 0 \end{bmatrix} = (*) \boldsymbol{\ell}_1 + \cdots + (*) \boldsymbol{\ell}_r \end{split}\]

Rank-Nullity Theorem#

Let \(A\) be an \(m \times n\) matrix. Then

\[ \dim(R(A)) + \dim(N(A)) = n \]

Proof. The dimension of \(N(A)\) is equal to the number of columns of the row echelon form of \(A\) without a leading nonzero entry, and \(\mathrm{rank}(A) = \dim(R(A))\) is equal to the number of columns of the row echelon form of \(A\) with a leading nonzero entry, and there are \(n\) total columns.

Exercises#

Let \(A = LU\) be the LU decomposition of \(A\). Determine whether the statement is True or False.

  • \(N(A) = N(U)\)

  • \(\dim (N(A)) = \dim (N(U))\)

  • \(R(A) = R(U)\)

  • \(\dim (R(A)) = \dim (R(U))\)

Solution
  • True

  • True

  • False

  • True